On the 0/1 knapsack polytope
نویسنده
چکیده
Given a set N of items and a capacity b 2 IN, and let N j be the set of items with weight j, 1 j b. The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the inequality b X j=1 X i2N j jx i b: In this paper we rst present a complete linear description of the 0/1 knapsack polytope for two special cases: (a) N j = ; for all 1 < j b b 2 c and (b) N j = ; for all 1 < j b b 3 c and N j = ; for all j b b 2 c + 1. It turns out that the inequalities that are needed for the complete description of these special polytopes are derived by means of some \reduction principle". This principle is then generalized to yield valid and in many cases facet deening inequalities for the general 0/1 knapsack polytope. The separation problem for this class of inequalities can be solved in pseudo polynomial time via dynamic programming techniques.
منابع مشابه
Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1
We build facets of the quadratic 0-1 knapsack polytope following two different approaches. The quadratic 0-1 knapsack polytope is included in the Boolean quadric polytope introduced by Padberg [12] for unconstrained 0-1 quadratic problem. So in a first approach, we ask the question which are the facets of the Boolean quadric polytope that are still facets of the quadratic 0-1 knapsack polytope....
متن کاملThe submodular knapsack polytope
The submodular knapsack set is the discrete lower level set of a submodular function. The modular case reduces to the classical linear 0-1 knapsack set. One motivation for studying the submodular knapsack polytope is to address 0-1 programming problems with uncertain coefficients. Under various assumptions, a probabilistic constraint on 0-1 variables can be modeled as a submodular knapsack set....
متن کاملForthcoming in Discrete Optimization THE SUBMODULAR KNAPSACK POLYTOPE
The submodular knapsack set is the discrete lower level set of a submodular function. The modular case reduces to the classical linear 0-1 knapsack set. One motivation for studying the submodular knapsack polytope is to address 0-1 programming problems with uncertain coefficients. Under various assumptions, a probabilistic constraint on 0-1 variables can be modeled as a submodular knapsack set....
متن کاملA note on the extension complexity of the knapsack polytope
We show that there are 0-1 and unbounded knapsack polytopes with super-polynomial extension complexity. More specifically, for each n ∈ N we exhibit 0-1 and unbounded knapsack polyhedra in dimension n with extension complexity Ω(2 p n).
متن کامل/ On Facets of Knapsack Equality Polytopes
The 0/1 knapsack equality polytope is, by deenition, the convex hull of 0/1 solutions of a single linear equation. A special form of this polytope | where the deening linear equation has nonnegative integer coeecients and the number of variables having co-eecient one exceeds the right-hand-side | is considered. Equality constraints of this form arose in a real-world application of integer progr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 77 شماره
صفحات -
تاریخ انتشار 1997